摘要: 在井眼轨迹控制过程中,进行滑动导向与复合钻进时,利用常规导向螺杆会出现钻头加载困难以及形成螺旋井眼的问题,从而对井眼轨迹的控制效果产生影响。为解决该问题,以前用过宽带的直棱和螺旋稳定器,本文特针对导向螺杆的结构做了改进与创新,准备在螺杆钻具驱动头位置设计带宽很窄螺旋稳定器。本文就针对改进后的导向螺杆钻具进行讨论。 关键词:导向螺杆;井眼轨迹控制;钻具 ![]() 一、高效导向螺杆钻具 由于利用常规螺杆会出现钻头加载困难、形成螺旋井眼等问题,因此对其进行结构创新,即在螺杆钻具驱动位置设计一种受螺杆钻具驱动旋转的窄带螺旋稳定器,其主要作用包括:首先,作为底部钻具组合的近钻头支点,从而有效的提高BHA的滑动导向能力;其次,近钻头近满眼设计可以修正井壁;最后,滑动导向钻进过程中,近钻头稳定器处于旋转状态,与常规的导向螺杆钻具相比,近钻头稳定器的滑动阻力更小,所以拖压问题即可得到彻底解决。这种导向螺杆的结构变化使得钻井过程中BHA的力学特征发生了改变。 二、高效导向螺杆钻具的承载能力 改变了高效导向螺杆钻具的结构,相应的就会改变钻进过程中螺杆钻具的受力特征。传动轴是轴力与扭矩的核心承载部件,其有着十分复杂的受力特征,也是螺杆钻具中最薄弱的环节,所以要对其强度特征做全面分析,并提出结构优化方案。下面以172mm高效导向相钻具为例进行分析。 下图1为172mm高效导向螺杆钻具的传动轴结构参数与边界条件: 图中各段的长度分别如下: L0=500mm、L1=180 mm、L2=420 mm、L3=400 mm、L4=360 mm;传动轴的外径尺寸为80 mm。可以通过ANSYS软件进行螺杆钻具几何模型的建立,并划分网格。钻头左端固定,传动轴联轴器部分铰支,对Y方向的自由度加以约束。以螺杆钻具轴向载荷传递特征为参照,将轴向均布载荷q加载于图中所示台阶面上,再以传动轴的工作原理为基础,分别将径向均布线载荷q1与q2施加于图中轴上对应的位置,传动轴右端施加扭矩。利用solid185—8节点实体单元划分网格。3575个节点以及15853个四面体单元组成整个模型,传动轴弹性模量:210 GPa;泊松比:0.25;密度:800 kg/m3。结合BHA的结构与实际工况将钻头侧向力与扭矩计算出来,即可取得上文所提的分布载荷。 (二)传动轴的应力计算与分析 通过ANSYS系统可以将传动轴受到外载与约束作用状态下的应力分布计算出来,从计算结果可知,最大应力值为434 MPa,发生在传动轴过渡截面处。针对不同外径计算其最大应力值,从计算结果可以得知,如果材质的条件不变,传动轴的外径越大,则作业的安全系数越高,如果把传动轴的外径由提高5mm,可以提升16%的承载能力,所以传动轴外径的取值为85mm。 三、近钻头稳定器的结构设计与螺杆动力系统的优化 (一)优化近钻头稳定器的结构 从某种意义上说,高效导向螺杆钻具的应用效果由近钻头稳定器的结构来决定,因此近钻头稳定器要具备两个条件,其一,稳定器基于旋转状态的支点效应、稳定性以及尽量低的额外扭矩;其二,要将岩屑及时排导出去。因此稳定器利用螺杆过封闭扶正翼,旋转一周可以保证支撑外径的稳定性,并且旋转行进时也可以保持较好的稳定性,额外扭矩最小。不同外径相钻具的扶正翼螺杆角与稳定器整体泄流面积,可以通过计算钻井液轴向流速与切向速度来确定。以前惯用的螺旋扶正器带较宽,和井壁接触多,所以磨擦阻力大,为些选用比常规小一倍的带宽,这样即起到扶正作用,又减少了扭矩的损失。 |
成为第一个评论的人